Air pollution is a crucial issue affecting human health and livelihoods, as well as one of the barriers to economic and social growth. Forecasting air quality has become an increasingly important endeavor with significant social impacts, especially in emerging countries like China. In this paper, we present a novel Transformer architecture termed AirFormer to collectively predict nationwide air quality in China, with an unprecedented fine spatial granularity covering thousands of locations. AirFormer decouples the learning process into two stages -- 1) a bottom-up deterministic stage that contains two new types of self-attention mechanisms to efficiently learn spatio-temporal representations; 2) a top-down stochastic stage with latent variables to capture the intrinsic uncertainty of air quality data. We evaluate AirFormer with 4-year data from 1,085 stations in the Chinese Mainland. Compared to the state-of-the-art model, AirFormer reduces prediction errors by 5%~8% on 72-hour future predictions. Our source code is available at https://github.com/yoshall/airformer.
translated by 谷歌翻译
各种深度学习模型,尤其是一些最新的基于变压器的方法,已大大改善了长期时间序列预测的最新性能。但是,这些基于变压器的模型遭受了严重的恶化性能,并延长了输入长度除了使用扩展的历史信息。此外,这些方法倾向于在长期预测中处理复杂的示例,并增加模型复杂性,这通常会导致计算的显着增加和性能较低的鲁棒性(例如,过度拟合)。我们提出了一种新型的神经网络架构,称为Treedrnet,以进行更有效的长期预测。受稳健回归的启发,我们引入了双重残差链接结构,以使预测更加稳健。对Kolmogorov-Arnold表示定理进行了明确的介绍,并明确介绍了特征选择,模型集合和树结构,以进一步利用扩展输入序列,从而提高了可靠的输入序列和Treedrnet的代表力。与以前的顺序预测工作的深层模型不同,Treedrnet完全建立在多层感知下,因此具有很高的计算效率。我们广泛的实证研究表明,Treedrnet比最先进的方法更有效,将预测错误降低了20%至40%。特别是,Treedrnet的效率比基于变压器的方法高10倍。该代码将很快发布。
translated by 谷歌翻译
最近的研究表明,诸如RNN和Transformers之类的深度学习模型为长期预测时间序列带来了显着的性能增长,因为它们有效地利用了历史信息。但是,我们发现,如何在神经网络中保存历史信息,同时避免过度适应历史上的噪音,这仍然有很大的改进空间。解决此问题可以更好地利用深度学习模型的功能。为此,我们设计了一个\ textbf {f}要求\ textbf {i} mpraved \ textbf {l} egendre \ textbf {m} emory模型,或{\ bf film}:它应用了legendre promotions topimate legendre provientions近似历史信息,近似历史信息,使用傅立叶投影来消除噪声,并添加低级近似值以加快计算。我们的实证研究表明,所提出的膜显着提高了由(\ textbf {20.3 \%},\ textbf {22.6 \%})的多变量和单变量长期预测中最新模型的准确性。我们还证明,这项工作中开发的表示模块可以用作一般插件,以提高其他深度学习模块的长期预测性能。代码可从https://github.com/tianzhou2011/film/获得。
translated by 谷歌翻译
尽管基于变压器的方法已显着改善了长期序列预测的最新结果,但它们不仅在计算上昂贵,而且更重要的是,无法捕获全球时间序列的观点(例如,整体趋势)。为了解决这些问题,我们建议将变压器与季节性趋势分解方法相结合,在这种方法中,分解方法捕获了时间序列的全局概况,而变形金刚捕获了更详细的结构。为了进一步提高变压器的长期预测性能,我们利用了以下事实:大多数时间序列倾向于在诸如傅立叶变换之类的知名基础上具有稀疏的表示形式,并开发出频率增强的变压器。除了更有效外,所提出的方法被称为频率增强分解变压器({\ bf fedFormer}),比标准变压器更有效,具有线性复杂性对序列长度。我们对六个基准数据集的实证研究表明,与最先进的方法相比,FedFormer可以将预测错误降低14.8 \%$ $和$ 22.6 \%\%\%\%$ $,分别为多变量和单变量时间序列。代码可在https://github.com/maziqing/fedformer上公开获取。
translated by 谷歌翻译
随着阿里巴巴的业务在各种行业中扩大世界各地,对大数据云计算平台的服务质量和可靠性施加了更高的标准,这构成了阿里巴巴云的基础设施。然而,由于系统架构复杂,这些平台中的根本原因分析是非微不足道的。在本文中,我们提出了一个根本原因分析框架,称为Cloudrca,它利用包括关键绩效指标(KPI),日志以及拓扑的异构多源数据,并通过最先进的异常提取重要特征检测和日志分析技术。然后在知识通知的分层贝叶斯网络(KHBN)模型中使用工程化特征,以推断出高精度和效率的根本原因。消融研究和综合实验比较表明,与现有框架,Cloudrca 1相比,Cloudrca 1)始终如一地优于不同云系统的F1分数的现有方法; 2)由于KHBN的层次结构,可以处理新颖的根本原因; 3)相对于算法配置更强大地执行; 4)在数据和特征尺寸中更有利地缩放。实验还表明,可以采用跨平台转移学习机制来进一步提高10%以上的准确性。 Cloudrca已被整合到阿里巴巴云的诊断系统中,并在三个典型的云计算平台中使用,包括MaxCompute,实时计算和Hologres。它节省了站点可靠性工程师(SRES)在过去的十二个月内解决故障的时间超过20美元,并且显着提高了服务可靠性。
translated by 谷歌翻译
Knowledge graph embedding (KGE), which maps entities and relations in a knowledge graph into continuous vector spaces, has achieved great success in predicting missing links in knowledge graphs. However, knowledge graphs often contain incomplete triples that are difficult to inductively infer by KGEs. To address this challenge, we resort to analogical inference and propose a novel and general self-supervised framework AnKGE to enhance KGE models with analogical inference capability. We propose an analogical object retriever that retrieves appropriate analogical objects from entity-level, relation-level, and triple-level. And in AnKGE, we train an analogy function for each level of analogical inference with the original element embedding from a well-trained KGE model as input, which outputs the analogical object embedding. In order to combine inductive inference capability from the original KGE model and analogical inference capability enhanced by AnKGE, we interpolate the analogy score with the base model score and introduce the adaptive weights in the score function for prediction. Through extensive experiments on FB15k-237 and WN18RR datasets, we show that AnKGE achieves competitive results on link prediction task and well performs analogical inference.
translated by 谷歌翻译
For Prognostics and Health Management (PHM) of Lithium-ion (Li-ion) batteries, many models have been established to characterize their degradation process. The existing empirical or physical models can reveal important information regarding the degradation dynamics. However, there is no general and flexible methods to fuse the information represented by those models. Physics-Informed Neural Network (PINN) is an efficient tool to fuse empirical or physical dynamic models with data-driven models. To take full advantage of various information sources, we propose a model fusion scheme based on PINN. It is implemented by developing a semi-empirical semi-physical Partial Differential Equation (PDE) to model the degradation dynamics of Li-ion-batteries. When there is little prior knowledge about the dynamics, we leverage the data-driven Deep Hidden Physics Model (DeepHPM) to discover the underlying governing dynamic models. The uncovered dynamics information is then fused with that mined by the surrogate neural network in the PINN framework. Moreover, an uncertainty-based adaptive weighting method is employed to balance the multiple learning tasks when training the PINN. The proposed methods are verified on a public dataset of Li-ion Phosphate (LFP)/graphite batteries.
translated by 谷歌翻译
In this tutorial paper, we look into the evolution and prospect of network architecture and propose a novel conceptual architecture for the 6th generation (6G) networks. The proposed architecture has two key elements, i.e., holistic network virtualization and pervasive artificial intelligence (AI). The holistic network virtualization consists of network slicing and digital twin, from the aspects of service provision and service demand, respectively, to incorporate service-centric and user-centric networking. The pervasive network intelligence integrates AI into future networks from the perspectives of networking for AI and AI for networking, respectively. Building on holistic network virtualization and pervasive network intelligence, the proposed architecture can facilitate three types of interplay, i.e., the interplay between digital twin and network slicing paradigms, between model-driven and data-driven methods for network management, and between virtualization and AI, to maximize the flexibility, scalability, adaptivity, and intelligence for 6G networks. We also identify challenges and open issues related to the proposed architecture. By providing our vision, we aim to inspire further discussions and developments on the potential architecture of 6G.
translated by 谷歌翻译
In this paper, we investigate the joint device activity and data detection in massive machine-type communications (mMTC) with a one-phase non-coherent scheme, where data bits are embedded in the pilot sequences and the base station simultaneously detects active devices and their embedded data bits without explicit channel estimation. Due to the correlated sparsity pattern introduced by the non-coherent transmission scheme, the traditional approximate message passing (AMP) algorithm cannot achieve satisfactory performance. Therefore, we propose a deep learning (DL) modified AMP network (DL-mAMPnet) that enhances the detection performance by effectively exploiting the pilot activity correlation. The DL-mAMPnet is constructed by unfolding the AMP algorithm into a feedforward neural network, which combines the principled mathematical model of the AMP algorithm with the powerful learning capability, thereby benefiting from the advantages of both techniques. Trainable parameters are introduced in the DL-mAMPnet to approximate the correlated sparsity pattern and the large-scale fading coefficient. Moreover, a refinement module is designed to further advance the performance by utilizing the spatial feature caused by the correlated sparsity pattern. Simulation results demonstrate that the proposed DL-mAMPnet can significantly outperform traditional algorithms in terms of the symbol error rate performance.
translated by 谷歌翻译
Domain adaptation methods reduce domain shift typically by learning domain-invariant features. Most existing methods are built on distribution matching, e.g., adversarial domain adaptation, which tends to corrupt feature discriminability. In this paper, we propose Discriminative Radial Domain Adaptation (DRDR) which bridges source and target domains via a shared radial structure. It's motivated by the observation that as the model is trained to be progressively discriminative, features of different categories expand outwards in different directions, forming a radial structure. We show that transferring such an inherently discriminative structure would enable to enhance feature transferability and discriminability simultaneously. Specifically, we represent each domain with a global anchor and each category a local anchor to form a radial structure and reduce domain shift via structure matching. It consists of two parts, namely isometric transformation to align the structure globally and local refinement to match each category. To enhance the discriminability of the structure, we further encourage samples to cluster close to the corresponding local anchors based on optimal-transport assignment. Extensively experimenting on multiple benchmarks, our method is shown to consistently outperforms state-of-the-art approaches on varied tasks, including the typical unsupervised domain adaptation, multi-source domain adaptation, domain-agnostic learning, and domain generalization.
translated by 谷歌翻译